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ABSTRACT

Separation of short-distance and long-distance dynamics
for heavy quark-antiquark systems interacting with color
gluons is investigated through a classification of
gluons according to their ranges. A gauge-invariant
double-multipole expansion scheme is constructed which
takes into account color fluctuation of heavy-quark systems.
Hadronic transitions between heavy quark-antiguark bound
states as well as the static quark-antiquark potential are

studied within this framework.

This manuscript was printed from originals provided by the
author.

I. INTRODUCTION

Heavy-quark systems, such as the ¢ and T families and those
of heavier quarks of possible existence, provide useful 1aboratories1
for testing the basic structure of quantum chromodynamics (QCD). As
the quark mass increases, the size of a heavy-quark system gets smaller.
For sufficiently heavy quarks, the system size will eventually
become much smaller than some characteristic time scale at which the
system interacts with external perturbations. The difference between
the system size and the interaction time will then serve as a useful
expansion parameter for the description of such an interacting system.
Along this line, a multipole expansion?"8 of the gluon field aroﬁnd
a heavy-quark system, originally introduced by Gottfriedz, has
extensively been studied and applied to heavy-quark physic39 such as
hadronic transitions10 in a heavy-quark family.

The purpose of this paper is to develop a systematic classifi-
cation of gluon interactions according to their ranges and to con-
struct a gauge-invariant multipole expansion scheme for heavy-quark
systems. Applications to hadronic transitions between heavy quark-
antiquark (Q3) bound states and to the heavy-quark potential are
studied.

For the construction of the multipole expansion we start by
assuming that heavy: QQ mesons are color-Coulombic bound states
(for which the QCD coupling constant ag = gz/(4w) <1). Special
care, however, will be taken to show that the resulting multipole
expansion scheme possesses a wider range of applicability than

restricted by this assumption.



The one-Coulomb-gluon-exchange potenti‘alll is attractive
( - %- us/r) between a color-singlet QQ pair with separation r
while it is repulsive ( + %»aslr) between a color-octet QQ pair.
Owing to this energy difference Ae = %— as/r, a color-octet Q
(scattering) state is unstable and has a lifetime 1 ~ 1/Ac -~ r/onS >r.
With the emission or absorption of a color gluon, a QQ state under-
goes a color singlet +> color octet (1 <> 8) or 8 «> 8 transition.
This reminds us of a close analogy between this color fluctuation
of the two-body QQ  system over a period of order 1/Ae and electric-
charge fluctuation of a charged particle over a region of its Compton
wavelength. The Foldy-Wouthuysen (FW) transformation,l2 accordingly,
is a useful guide for the construction of the QCD multipole expansion.
The relevance of color fluctuation (or the binding effect) of the
QQ system to the perturbative study of the heavy-quark potential
has been pointed out by Appelquist, Dine and Muzinichls.

A heavy QQ bound state has some characteristic scales; the

quark mass M, the Bohr radius = and the binding energy -~ Ae.

B’
{In order of magnitude, M: l/rB: Ae = l/aS: 1z og for a Coulombic
bound state.] Correspondingly, there is a natural divison of the
gluons distributed around the QQ bound state, relative to these
scales, as illustrated in Fig. 1. (I) The gluons distributed over
a region of the Bohr radius (i.e. those with momentum %] - 1/rg)
predominantly build up Q§ binding. Very hard gluons with momentum
|K] >M, however, mainly contribute to the renormalization of the
one-body structure of the quark rather than to the two-body QQ

structure. (II)} The gluons distributed over a region of dimensions

of order 1/Ae (i.e. with l/rB 2;!?]2: Ae) are responsible for the

abovementioned color fluctuation of the QQ system. These gluons
(which we shall call hard gluons) may be expanded in multipoles with
the expansion parameter p = (QQ separation)/(1/Ae) = rae. (II1)
The gluons softer than the scale Ae have longer ranges and tend to
connect this fluctuating éystem with external perturbations. These
soft gluons (Jk] < e, or symbolically14 gAuféAe),will be classified
into multipoles with the expansion parameter & = (gluon momentum
or energy) /Ae ~ gAu/Ae. In this way one is led to the idea of
a double-multipole expansion of the gluon field surrounding a 0]
system.

In Sec., II, we perform the separation of soft and hard gluons
in the QCD Lagrangian. In Secs. I1I and IV, we construct the
multipole expansion scheme for heavy-quark systems. We avoid the
problem of gauge invariance15 by casting the multipole expansion
scheme into a gauge-invariant form in the early stage of the con-
struction by use of an appropriate unitary transformation.7’8
Selection rules for hadronic transitions between heavy QQ bound
states are discussed in Sec. IV. Unlike photons which are neutral,
gluons carry color themselves. It is, therefore, important to study
how soft gluons are coupled to the hard-glion cloud around the QQ system.
The effect of the hard-gluon cloudon hadronic transitions of low multipole-
orders turns out nonleading as compared with that of the basic QO
structure. This indicates that the present framework will be apnli-
cable to known heavv-guark families by use of some phénomenological
20 potentials in place of the Coulomb potential. In Sec. V, we derive
an effective Hamiltonian projected to the color-singlet QQ sector,

and briefly study the effect of very soft gluons on heavy QQ mesons.



In Sec. VI, the effect of soft gluons on the static heavy-quark
potential is studied perturbatively within the present framework.
Sec. VII is devoted to concluding remarks.
II. SEPARATION OF SOFT AND HARD GLUONS

In this section we separate soft-and hard-momentum components of
the color-octet gluon field Jéci(x) interacting with a color-triplet
heavy-quark field d)a(x)._ )

We adopt the Coulomb gauge akA;‘(X) = 0 to quantize this quark-

gluon system. The Lagrangian is given by

L=Fo(ip - M+ g,ﬁTa)w - lFWMJZ + (FP), (2.1
with
POkl = 258 - 0 &+ g £PUK (2.2)

where Ta = %— A a(a =1,...,8) are the color matrices for the quark.
It is straightforward to include light quarks, which are omitted here
for simplicity. The Faddeev-Popov ghost term (FP), whose explicit
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form is well-known, ~ will be suppressed in what follows.

In the Coulomb gauge, the free-field propagator
< Tui(xﬂs(y) >free _ 6abAC (x-y) derived from the free-field

Lagrangian (Bq. (2.1) with g = 0) is given by

<xli¥ly >,

#t

C
AOO (X'Y)

<x| (-6 - KAy 07 - 10)y >, (2.3)

C
by (x-Y)

2 2 k

=%, and V=3 16

where 3 As is well-known, the

X
generating functional of the free-gluon propagator

Wylnl = < OIT*exp<i it d4xn“ (x) ..}%(x) )iO >fTee o written as
Woinl = e[~ 31 fatkaty b i}, @

Let us divide the propagator AS\) into soft and hard components

. N C S H
lative to a um s : A -y) = ~y) + -y)-
re ve to a moment cale A ™ (x-y) AM V(x y) Au\) {(x-y)

This division is rather arbitrary. The choice of the hard component

Agv(x-y) which we use in what follows .is

Mo Gey) = <x|1/(v2 + 2|y >,

< x| (-6¥* - %%ty % + a2

it

A%(x-y) - 10y > (2.5)

This is the propagator for a vector particle of mass A in the
Coulomb gauge so that its range is of the order of the Compton
wavelength 1/A .
As verified easily (note Eq. (B.1) in Appendix B), this “hard"
S Y B

3 7t Y F-3 -
propagator and the associated ''soft" propagator AW Ali v Auv are

constructed from the Lagrangian

[
|3t
™~

_ 1 N2
£O[A,B]— T ('BUB\) = SVB}J) + 50 "B

=

-3 (BA, - 3A ) %%{(VZAO)Z . (azAk)(azAk)]

(2.6)



. a
by the standard path-integral methodlé where the fields Au (x)
and Bﬁ (x) are treated as independent fields subject to the

Coulomb-gauge condition
k,a _ a _ 2.7
AL = BkBk 0. _ (

The generating functional 'WO[n] is represented by the path-integral

Wylnl = f{dA][dB].G(akAk)a(akBk) eXP{ifd4xI£o[AaB] +ny.(Au+ B)IL
(2.8)
Let us denote the interaction part of (2.1) by ,cint[,#;q;,@;... ]-
The standard perturbation theory is generated by operating
exp(if d4x£im:[ §/in;..1) on Wylnl, where only the gluon part
is shown explicitly.
This implies that, in terms of Au and Bu, the present

quark-gluon system is described by the effective Lagrangian

Loge = LlAB;...1 + £, [A+B; 9, Ui..-l, 2.9)
where £O[A, B;...] (originally' defined in Eq. (2.6)) now involves
the free-field Lagrangians for the quark and the FP ghost as well.
[ It is necessary to decompose the FP-ghost field into soft-and
hard-momentum components in the same manner as done for ,,43.] Note
the relation Fu\)[ A+B] = FUV[A] + Vp[ AlB -V [Al Bu - ingB\),
abcAc,
N

where VU[A] is ‘the covariant derivative Vib[ A}l = Gabau +gf

and ]'3;1 stands for a matrix field 'Eib = ifaCng . Then the

Lagrangian (2.9) is rewritten in the following compact form

Lope =0-(iF - M+ g K+ BT )y

1 2 1 i i mn 2
T EJMAT -7 GIAB -V [AB - igBB)

+ BAIAE A < A, -2 A)] +er L (2.10)

& = 1A2BZ +

1 [ova)? + (%) (%%}

11
7z X’[ (2.1
The Feynman rules are derived from the path-integral representation

of the generating functional of the form (2.8) with .EO[ ALB]
replaced by the full Lagrangian °Ceff‘

The Lagrangians (2.1) and (2.10) are equivalent in the sense
that they lead to the same set of Feynman rules, The original field
AS in the former is decomposed into the soft- and hard-momentum
components Aﬁ and Bi in the latter. The fact that Au and BH
are treated independently in £ off plays a key role in the present
approach. Note that the gauge-invariant structure of £e ££ becomes
manifest only for very soft Au or very hard Bu.

It is straightforward to generalize the content of this section
to arbitrary gauges.

IIT. A MULTIPOLE EXPANSION SCHEME FOR HEAVY-QUARK SYSTEMS

In this and next sections we censtruct a multipole expansion

scheme for a heavy quark-antiquark (QQ) system.
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0

the kinetic part 9 N Ai and the selfinteraction part
. . . N . u v v
The physical picture explained in Sec, I and the formalism devel- be.b.c a
g £ Au‘AV in FW[AJ are of the same multipole-order. For hard
oped in Sec. IT are combined to lead to the following program: At %
: : gluons B , 3 ~ 3/8r .~ 0(-1,0).
first, we choose the scale A -to be of the order of 24¢ and s . _
The double-multipole expansion scheme constructed in this way
sum the contribution of the hard-gluon field Bu in the Lagrangian i . .
’ i ~ does not take a manifestly gauge-invariant form. It is, however,
(2.10). This hard-gluon summation procedure generates QQ binding ) = Lo i 17
possible to cast it into a gauge-invariant form by an appropriate
as well as the multipole expansion of the hard-gluon field (developed . o
gauge transformation. Actually, it is advantageous to introduce the
in-powers of p = rAe). We perform the hard-gluon summation according o .
gauge transformation in the early stage of the construction.
to the number of hard-gluon loops. The resulting Lagrangian describes . L -
- To find a suitable transformation, let us try to express the
how soft gluons are coupled to the Q@ system surrounded by the hard- i . - .
soft-gluon field Au (x) at position x in terms of the field
gluon cloud. The multipole expansion of the soft-gluon field is i o > i
at some fixed position u (which will later be chosen to be the
obtained by rearranging the soft-gluon interactions in powers of

&= gA, /he.,

The assignment of multipole orders is dome in the following

c.m. position of the QQ system). We consider the gauge trans-

formation

way. For a (low-lying) Coulombic bound state with quarks of mass M, ,
: V) > (x) = VO ) -
the binding energy is, in order of magnitude, given by
) 3 > . . :
MOZ ~g*M ~Be= 20 /r, where T = |r| is the QQ separation and ;
SFM i e > K300 = P@OR + biE) 3-1)
J’O = = §3/3r is the relative QQ momentum. Accordingly,

-2 > -1 '
P=r1Ac . Olog), M~O0(p “Ae) and .~ O(p "Ae). [From now on, the _ _

7 o F where V(0) = exp(i6°T,) , U(6) = exp(i§), 5% = if*PS and
multipole order O(p € Ae) will simply be denoted by O(n,m).] By ) by )
bu ®) = (i/g) U(e)(a' U (e)). In what follows, unless otherwise stated,
definition, A ~ e ~0(0,0) and gA ~ 0(0,1). On the other hand, ] L )

‘ } all quantities are defined at common time t which will be suppressed.

~ 0{0,0) since a hard gluon exchanged between Q and Q gives

& By @0 £ g ) Taylor-expanding G aromd T in (3.1) gives
rise to the Oc/r potential, We assume that the QQ system is - H

. . ' k
originally at rest so that its center-of-mass (c.m.) momentum P

K20 = PRI 20® + b2 3.2)
is a result of recoil against external perturbations. Hence we assign H M
k
P~ O(g—l\) ~ 0(0,1). The derivatives 3 acting on soft gluons A where W =X - 4, We) = wkal((u) and ;;IEU); 3/3u .

are of order (’0;1): This implies that the soft-gluon sector should

be treated as a fully Interacting system in the present formalism since
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Suppose we fix 6(x) in such a way that

‘ > _2ab
Uab(e)ew°3 = [ew-v{A(u)]] , (3.3)

where wes[A@)] = Wk(glgu) --igAu(uﬁ) . It is not difficult to
verify that U(p) fixed in this way contains no derivatives 3/ 3uk

as operators - and that V(g) takes an analogous foxm18

V) = exp[ (e - it @T,) exp(wea). (3.4
Then, as shown in detail in Appendix A, the transformed soft-gluon

field A;(;) is expressed in terms of field temsors Fu\)[A] defined

at U so that

860 = 4@+ B pgyr T AN WEADI,
NG = 8 ko (v A WE L AG] (3.5)
k &y 7l (n¥Z) / L ’ )

Notice that A{((G) = 0. For the hard gluon B (X) we define the new

field by

5260 = PP (3.6)

As is obvious, gB;~0(gBu)~0(o,0). With these new fields, the

Lagrangian (2.10) is rewritten as

12

Lope = W 118 - M+ g(&" + B)).T1y - %Fu\)[A]Z

2.1 22

_ 1 ’ 1 12 1 iR
I(VU[A]BV v\)[A ]15]J igB'B 5 ’

s
u v
e, (3.7}

where only terms relevant in what follows are shown. We may regard

’ s
b, B

of field variables (¥, B, Ali) -~ (', B;J, Au) in the path-integral

and Au as fundamental fields in £e ££5 this means a change

formalism. The Coulomb-gauge condition akBk = 0 1is translated into
. Lk

X - igh“(eN B - 0 . (3.8)

For bX(g) =-AK(@) + ..., defined in (3.1), see Eq. (A.7) in
Appendix A.

Having cast the soft-gluon interactions into a gauge-invariant
form, let us now study hard-gluon exchanges, as 1llustrated in
Fig. 2. In the zero-hard-gluon-loop approximation which follows from
a Gaussian path-integration over the hard-gluon field B;, hard-
gluon exchanges between quark color charges are described by the

effective Lagrangian

£l =V (a0 - M+ g TV ()

3.9)
1.5 < opab vb (
- 3 [V M0 28 (x,y3 KT )

1 2,11 2, 42 2 2,k
S E A +7A~7{(v AQT* (BAY(BAD] ...,
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where JS x) = v (x)‘_{pTallJ'(x) is the color current of the quark.
Here @i‘g(x, v X)) is the hard-gluon propagator
i_1<T*B{la(x)B:)b(y)> in the presence of Au Its explicit form as
a functional Au is given in .Eq. (B.1) of Appendix B. As a
consequence of (3.8), @ﬁg depends upon bk(G[A]). As verified
readily, when @33(}(, y; A')' is expanded in powers of A; and
bk(e); terms involving bk(e) contain long-range propagators such
as 1/ (akak)_. Since we are summning only hard gluons, such long-
range terms should be excluded from @33 . This implies that the
hard gluon B{( is effectively subject to the Coulomb-gauge
condition a¥B] = 0.

Diagrammatically, @35(_;(? y; &) consists of hard-Coulomb- and
transverse-gluon exchanges accompanied by soft-gluon emission, as
depicted in Figs. 2 and 3. Because of the retarded nature of the
transverse-glyon propagator (Eq. (2.5)), @ig x, y; A') is not in

~general instantaneous, It is, however, well approximated by its
instantaneous part. Note that, for a transverse-gluon exchange
between a O pait, the energy transfer (- Ae) is smaller that the
momentum transfer ( ~ 1/r) by a single power of o . ag.

Correspondingly, with the expansion of the propagator
- , - 2.-1. -
R O I AR S b FERSE FAURY o i R ¢ 1)

one can extract the instantaneous limit of 9333(3(_, Y A). We denote
the instantanecus part by @33 6(3 37; A') so that

_ab R O ) L
Qu\)(x’ Y A) - @UV(X, Y'g A )5(}(0 : YO)-

14

Details of the calculation of @3\%(3’(, '}¢ 5 A') are given in

Appendix B. Here we simply make a remark and list the result.
Remark: Soft gluons tend to be coupled to the hard-gluon cloud

distributed close to Q or Q. This is because the hard-gluon

propagator, e.g. Algo(i - 7) = olxy z4) exp(-AK - Z|)/ (4% - 2D,

blows up as Z » X. This fact leads to the color-dipole (as well as

multipole) nature of the hard-gluon cloud around the QQ system.
Figure 3 (a) ~ (e) are the diagrams that contribute to

Qgg(;c, ;, A up to 0(3,4). We choose the fixed position T to

be U= %— (x +y) and express A:1 in terms of the soft-gluon field

defined at U {using Eq. (3.'5)). The result is

. .y .2
2 ab.e _ 28 g 1 —a— | T
g Do) =+ [1 abvees (z Fafi * Bofig * 00, 6))

121

. L2
+ -%(rkvzpm) + 02, 5) - B (r%)
B (R - R

2 2
gr I ryegg— . 1 kg e
* e % ((XZ ) Fdfia 3 rkqunrsz) 3
’ ' ab
+ 0(3,6) ] ,
(3.11)

ab

where ¥ =X -7, v = BIA@] , G =i PEE [AD)], etc.
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The first term, the Coulemb potential, is of 0(0,0). The contribu-
tions of order p,0° and p° start with O(1,4), 0(2,3) and 0(3,3),

respectively. The last term involving time der:'Lva’cive.s19 represents

nopinstantaneous interactions of 0(3,4) coming from diagram Fig. 3(e}.

Transverse gluons are responsible for spin-dependent quark-gluon
interactions . The coupling of transverse- gluons to a heavy quark of
mass M is suppressed by a power of 1/M. Correspondingly, in order
to study the spin-dependent multipole interactions up to order ps, one
needs to calculate gZ Q%k(§, V: K) and gz Qi2(§, ¥; A") wp to
order p2 and pl, respectively.

Figure 3 (f) contributes to gz @Ok&’ ¥; A) wp to 01, 2)
and 0(2,2):

k o o7

2 ab 1F0k+0(1, 4)+§(36kl_rr)f;
T

g () = igas[-— 2

. s ab
+7%KT’LF“‘%+0(2’3> J . (3.12)

Similarly, the evaluation of diagrams (g) and (h) gives

§2,%, 7 ) wto 0@, 2):

2

‘ k&
28Dy _ 1(k  rr 2
g D) = ag [ 2?(6 = )+‘A6k£

b
1. K ke &
+ oy igF™ + 87 77) + ] , (3.13)

where the first two terms follow from the instantaneous part of the

free transverse-gluon propagator expanded in powers of TA.

16

The last term involves time derivatives Vo= 9 " igmz
Here we observe that the noninstantaneous terms in Egs. (3.11) . (3.13
contribute to  0(3,2) or higher in the present multipole expansion
scheme; in what follows, we shall ignore them so that the Lagrangian
(3.9) is regarded as local in time.

The nonrelativistic reduction of the Lagrangian (3.9) is most
efficiently done by applying the FW transformation to the Lagrangian
(3.7) rather that to (3.9). Up to O(ps), the result is cast in the

form

o 00 sopl. .'12_14)
£eff-q)'-[1y- (g 1gA0T)—(M+.ZMO g-IV-FO

+

g s 4 4 ’ N
&Z—YO((Vk[B +A]FkO[B + A'1)-T

- oM{pk + g(B + AT, Fyol B+ A'] T})

] vor L., (3.14)

where ¥V’ is the transformed quark field, O = - Yoyk [pk + g(Bl'( + A{()‘»T]

-

and pk = - ia/axk. The gluon sectors remain unchanged in the above.
Functional integration over B’ leads to the nonrelativistic version
of Eg. (3.9).

IV. HEAVY QUARK - ANTIQUARK SYSTEMS

The effective Lagrangian (3.9) describes how soft gluons are

coupled to heavy-quark systems surrounded by hard gluons. Let us,

in what follows, ignore pair creation of heavy quarks and the

renormalization of the one-body stucture of the quark, both of which
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are caused by very hard gluons (]I_E] >M). Then, it is convenient to

project the Lagrangian (3.9) or (3.14) onto the two-body QQ subspace.

Namely, we replace the quark sector in the Lagrangian integrated over
space (i.e. L= f[dxL g by

a'»b‘J[ 6a'~a b'b. xa'b’lab

s ‘g - ]‘?(?cQ,KQ)ab,

(4.1)

I
LQQ ¥ &Q’XQ)

Where \y(?cQ, —inab is the field operator for the QaQb system with
color indices (a, b); spinor indices are suppressed. The two-body

Hamiltonian -ﬁ"a,b, lab

is constructed out of the original Lagrangian.

The projection procedure is straightforward when the quark and
antiquark positions G)(Q’ }Q) are chosen as independent coordinates
[We use the charge~cohjugated field to denote the antiquark field so
that the kinetic temm is written as  ¥or (1% -M + gﬂq‘*)wé,
where the color matrix T: is the complex conjugate of TC.]

On the other hand, some care should be taken when the c.m.
coordinate u = %—(;Q + §Q) and the relative coordinate T = ;Q - ?CQ
are chosen as independent variables. In this case, one has to make
the projection onto the Q sector before the gauge transformation.
This is because the c.m. momentum Pk = = ia/’auk and the relative

momentum fk = - ia/ark respond to the gauge transformations (3.3)

for the quark and the antiquark sectors. As shown in Appendix A,

18
under the combined gauge transformations (3.3) for the quark and
the antiquark sectors, the covariant derivatives (ak - igAk-T)Q and

®
(3g * igh T )Q undergo the change

103y - 1A Tlg> 30 * 22) + (B + g0y

10y * 14T )g 30y + 89 -+ s “.2)
with )
o = AW G - Algu%sc’Q) ey

o = 2l GQeT - KGT) (4.3)

where A]'((;c) is defined by Eq. (3.5) whereas Algu) (x) is given by
Ag(x) in Eq. (3.5) with the Lorentz index 0 replaced by k. As
before, T_ = (T)* 2", 17 = 62'2(7")P® ang P, = P 6% 20D,
etc; the fields Qk and ‘bk are matrices in color space. Color
indices will be suppressed in this fashion when we work in the two-
body QQ sector. The projection operators J iqb' |ab = Sa'b'ﬁab/N
and y;‘"b' lab _ aa'aéb'b~!y§1'b'lab (N for color SUN)) serve to
extract color-singlet and color-octet QQ states, respectively. We
shall later use the following combination of color matrices:

(T, c = TC * T:. Note that T_ is nonvanishing only between color-
octet QQ states while T, inducesa 1 <> 8 or 8 « 8

transition of the QQ system. [This follows from the relation

Fr =1 F = P 1.F - 0.
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Obviously, (Pk + gy ) and (f’k + gq)k) are the covariant
derivatives associated with the c.m. and relative motions of the
QQ system, respectively. Under the present gauge tranformation,
the hard-gluon field B is transformed in the same way as before
(Eq. (3.6)) and .l (x y; A) is converted to @ (x y; &.

With these remarks taken into account, it is now a simple task

to derive the gauge-transformed form of the two-body Hamiltonian. Its

relativistic form is obtained simply by the substitution (4.2). To
derive the nonrelativistic form, we start with the nonrelativistic

Lagrangian (3.14) ‘withouf primes on the fields and make the gauge

transformation using (4.2). The resulting Hamiltonian is written as

>

eV XQQ +xhard 4.4)

where th ard consists of hard-gluon exchanges. Up to order p3,

.;Q’QQ is given by
Hos= - g GT - AYGDT) + Ltb+ gh)?
Q Aolxg 00 m.f

1 =22 2
- ® + gi)
pr I R m @+ 8D

£ AR
Filog Frgl X Gl T R X Gl )
’ c > ke ke, *
- ﬁ’sz%[“u”("q T+ o5 T) , (4.5)
where the spin matrices oé& and 0159, (31(3‘Q = Mmg , etc.) act on

two-component spinors of the quark and antiquark.
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xhard

To construct , we first extract the hard-gluon interactions

up to order p3 out of the gauge-transformed form of the Lagrangian

(3.14):

__gB°T+ jo —(p rgAN @)1 B’kT}*cQ B;)aﬂ

g k ’ k! 1 - 7
*8;47 [(a 3 Bg) T + cQ’L {fﬁ 7, + gA @)-T) (akBO).T}]

2 ¢, —
- G [mem? 3 aotiE-T]
+ (antiquark sector ) + ... , (4.6)

where B{(‘T = B{((;Q)*T , etc. The antiquark sector is obtained from
> >

the quark*sector t}lzoug}};the replacement Bi((xQ) > B{((XQ) ,

TC* - Tc and UQ *0(-2 . On inte-

grating over the hard-gluon field, as done in (3.9), one gets the

hard-gluon exchange Hamiltonian ;e’h ard_

The part of ﬂ’h ard’ which involves 960 (;, ;; A’), is given by
hard 2 ce > >
xlar =-g [ 92)00 (xQ,x ; A)
B 1 ) ce > > 7 +_ ->_. ’
7(TT) Do GpXgs A - Z(T T )@ O(xQ,x ; A z‘l

+ (o n/MZ)T T*53(}’)

s Rl 0w

(4.7) continued on next page
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S IR ok SO S TJ}]

+ .. . . (4.7)
The §-function term which follows from akak(%r) 1, 53(—%) is of
0(2,0). The K—dependent part [of 0(3,2)] of the last term acts
only between color-octet QQ states since
T, AT, T: }}= %TZ ;A-.T_,Tcii = - (2/N) AT, as verified
easily. Note the structure of the first three terms: The second
and third temms represent hard-gluon exchanges by the same quark
(or antiquark), 20 and involve ultraviolet-divergent selfenergy
corrections which are removed by mass renormalization. (See Fig. 3
(_b,) ~ (e').) They, as a matter of fact, play an important role:
In the 1«1 and 1<>8 chamnels, i.e. in J%ﬂ;ard
.ﬂ?ard 3’_{, the Coulomb- exchange terms are proportional to

D regCor Rgi K1) = DG, F5 A1) - 3955 G Fgit)

- %‘@00&(23 XA (4.8)

Owing to this stucture, terms ihdependent of T= BEQ - ?CQ vanish in
@__. Consequently, :Nglard

heg starts with 0(2,0); the multipole

interactions of order p which have undesirable direct 11

components are removed (Note that ._77 (T T )39 = (2N) 1 Cejl.)
These order-p terms constitute the leading infrared structure of
@00&0, X 3 A') ; they become singular as A » 0. The removal of

these terms makes ;Hl:zard

less sensitive to the structure of the hard-gluon,
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cloud . Note that there is no such cancellation for the 8 <« 8
component ofﬂ};ard.

The part of JJhard, that involves 2 starts with 0(2,2)

1%
and 0(3,2):
hard _ 185 = [2 3= (F . 13576
Hhard - =8 7 1 [.3_1;]0 0(2,4) - ¥ |3 :Z(Er)rUf7
ce
- _Z_lgg.(;xf) + ... ] , (4.9)

where EX= PkO'[A(G)] , _ﬁf' = Ekjok, etc

- 1> —)_ .
., and S = T(GQ + oQ) is the
total spin of the QQ system. Some remarks are in order as to
the general structure of .:H'}Zlard. (1) The 'order—pz terms in }‘}Zlard
are given by the T= ?(Q - §Q =0 limit of
2 Aroce> =,y _ce »_‘,’]k
("M [ B G, X3 &) - Dol X )| (4.10)

It follows from this and the Bose symmetry @gle(('i s ;Q A') =

@ig(; R Q’ A) that :“hard has no 1 <* 1 components of order DZ.

(ii) The spin-dependent part ofﬂ zard is proportional to

g“ 2, D55 Gp X XD + oF B Frolig X 4D, (4.11)

> .
where Bk acts on §Q in the first term and on XQ in the second

. h
texm. It is easy to see from this that J¥ Zard has no AS =

. > > ->
1 <+> 1 interactions (i.e. those proportional to o©_ =0, - GQ) of

Q

order 93 .
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hard

The part of s , that involves gkl , is given by

w7 = T T Gy 3 ) PP

o

+ R%rk{"gl{%’{fz K % P + gahoT), TZ}}
+ oléz{Tz, {jﬁz + %.(PQ-F gAl'T_),TC}H

% ¥ 2T1 ( K rkrz) 8 kﬁLS—»]
* — Oy OF -8 +3—-2— §78Y (v
M Q Q[—g T )

T

T , ' (4.12)

where the &-function comes from akak' A,QI'L (_f) . Note that hard-
transverse-gluon exchanges mainly produce the higher-order
structure of QQ binding.

After some manipulation, RV - Q%Q + .x’h ard is rewritten as

new
H =K 1 H K L K . H
e e T T A (4.13)

with

a & o 2
Hommeg o2 - ;;143(]:»2) T iR S

S LE-iael) Tt 5)63@

T I‘l
o >
- _Sﬁz_ls}_z{ { -(?x(? + gheT ) , T }}

1 =22 1 > 1 2=
3{5 = - ghy T+ 5 g(xE)-T, + gg(rﬂr-:é)-”f_ * ig& ((IM r'—g}"l"_{_

e »
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o

[T et gt

+

AR SR S S

=

+ .

74 %ik’ (I’Vﬁkl‘T+} - & {Pk + gt ,F x m¥er,
+ ... . ‘ R (4‘14)

where (Ek)c and (_Hk )C are the color-electric and color-magnetic
fields defined at ﬁ, respectively, and 1= —fxf is the angular
momentum of relative QQ motion. As defined before, T, =T=zT,
§=—1-0'+c5 G =06-0x

Co* gy -7

The first three terms mifé represent the relative Q

and TV = rkvk[A(E)]

motion (of 0(0,0)) and are regarded as the umperturbed Hamiltonian
for perturbative calculations in the present multipole expansion
scheme. Note that the Coulomb potential is rewritten as

-(T.T )as/r = - CFocs/r + Aeyy, where Cp 2—(N - 1)/N and

pe =1 5 N'os/r (N = 3 for color SU(3)). The last term in «7%
represents the c.m. motion as well as the recoil effect of the QQ
system [ of 0(2.2)1. The *’Vv represents the QQ potential of
0(2,0),:apart from the last term of O0(3,1). In the Abelian limit
it.is reduced to the Breit-Fermi Hami1?;onian.22 The 'ij and oF

H
describe soft gluons coupled to the quark and antiquark. The g AO-T_

. term represents the static Coulomb interaction of 0(0,1), which
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acts only between colored (8) QQ states. The color-electric dipole
(color-El) interaction %—g(?-f).-'l"_* induces a AS = 0; AL = 1,
1+>8 or 8«8 transition [of 0(1,2)] of the QQ system. The
remaining terms in WE are color-EZ and color-E3 interactions.
The color-magnetic dipole (color-M1) interaction %(g/M)glfﬁk.T'
causes a parity-conserving, AS =1, l+—> 8 or 8 «> 8 transition
of 0(2,2). Another color-Ml interaction is proportional to the
“intrinsic" color-magnetic moment %(g/‘M) (T + 23) of the coiored 0
system.

The last term ,x’g describes the coupling of soft gluons to the

hard-gluon éloud :

], (4.15)

where the last term is included here for convenience. As for terms
of order p3, only those that have 1 <> 1 components are shown.
The first term represents a color-El interaction of 0(2,2),

which is nonleading. It is important to note that the effect of soft
gluons coupled to the hard-gluon cloud is in general nonleading

as compared with that of soft gluons coupled to Q and Q.
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Intuitively, this is because the color charge associated with the
gluon cloud is induced by the quark and antiquark color charges so
that its effect is in general smaller, by a single power of p . Ogs
than that caused by Q and §. Unlike Jﬂ’l} or 4, ehard possesses
direct 1<+ 1 ‘components starting with order 93. Fortunately, they
turn out less dominant than those generated by combining the low-order
interactions in '3% and ~3€l, as is seen from Eq. (4.15) and

Fig. 4. In particular, xhard

involves no AS =1, 1<« 1 inter-
actions of order 93, as noted earlier.

Hadronic ’cransitionsz3 between color-singlet QQ bound states
proceed via the emission of gluons. Hadronic transitions of low
multipole-orders are listed and schematically illustrated in Fig. 4.
Note that any number of color-Coulomb (8 <+ 8) interactions
ng’T,, can be inserted between a pair of (1 <> 8) and (8 « 1)
interactions without increasing a power of op.

V. EFFECTIVE 1 «» 1 INTERACTION

The present formalism based on O (Egq. (4.13)) is applicable
to reactions involving colored as well as coloriess QQ states. It
is, nonetheless, instructive to derive an effective 1+ 1
(nonlocal) interaction out of the local Hamiltonian A
systematic procedure for achieving this is to use a unitary trans-
formation which removes the 1 <+ 8 components of e ew’ in exact
analogy with the FW transformation which removes transitions
between positive- and negative-energy states of a Dirac particle.

Let us denote the transformed Hamiltonian by

’ iv

w =e (Xnew

- ipfete V. (5.1)
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Appendix C outlines the construction of the unitary transformation

eiv. We denote the color-singlet piece of the unperturbed Q

Hamiltonian by Jti = M + fZ/MZ - CPuS/r, and the color-octet part

7
by 3"’8 = 3‘?1’ + Ag. Then the 1 <> 1 component of the Hamiltonian H

is given by

NEW.:

with
. 2
<e lgje> =§N<a |G-B)le -9 + i1 17 + hoe. e >

2 g N
+ %<e ]{%mg H-i (1\14 f - ——r (VkFSLk),)}

R -1 > =
- o >
x[g H, - 1VO] (r*E) + h. c.le

3
g <1z e - ] . LM iV .
+m<si(r13)[s £+ 1Y, (rE)€ AR ]1(r
+ h. c.le>+ ... , (5.3)

¥
where e >and: le > are the eigenstates of the color-singlet

Hamiltonian -?t’l, 9?1 le >= ele >, etc. E stands for the matrix

field (}g)ab = dabCEC, where dabC are the totally symmetric

coefficients of SUM). The energy denominator
(e -9+ iy, 1" = > LlceJt’) 1V} (e -7
n=0 |
is a matrix in color indices; the time derivative in

VO = VO[A(E)] acts on all the gluon fields to its right.
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The «X; is the effective Hamiltonian which describes hadronic
transitions in a heavy-quark family discussed in theprevious
section. The first through third terms in J(’S begin with multipole-
order (Z,4), (3,4) and (3,6), respectively. The first term
agrees with the result obtained by Peskin.6

The diagonal component < ¢| J{’S]g > may be regarded as
representing the effect of soft gluons on a heavy QQ bound
state |g¢ >. Let us, following Voloshin,4 take the expectation
value of < glxglg ~> between the gluonic vacuum [0) which is the
lowest energy eigenstate in the pure soft-gluon. sector. Then the
effect of very soft gluons residing in the gluonic vacuum is
factorized from the lo;alized QQ system and is represented by the
vacuum expectation values of gauge-invariant operators such as
(O[Ek» (VO)nEziO), as seen from (5.3).

VI. STATIC QUARK-ANTIQUARK POTENTIAL

In the present multipole expansion scheme the soft-gluon
sector (as well as light-quark sectors in case they are included)
is treated as a fully interacting system although the hard-gluon
sector is treated perturbatively. The standard weak-coupling
expansion is :'L'nappropriate13 for the study of soft gluons. The
multipole expansion scheme, on the other hand, has control over
soft gluons surrounding a QQ system: The binding energy of a QQ
bound state provides natural suppression of soft-gluon emission.
In this section the multipole expansion scheme is applied to the

perturbative study of the effect of soft gluons on the QQ potential.
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For this purpose we treat the soft-gluon sector perturbatively
in the effective Hamiltonian (5.3). For simplicity we take the static
limit M-» « . The order~pz term in (5.3) leads to the following
cofrection to the Coulomb pofential:

t . '

@) = - igh /@) [ar'e T G RS ) >
- (6.1)

where [g - &#% + :'LVO]'1 has been replaced by the causal propagator25

<t|lidy -he+ 10l [0>= - i8(t)exp(- itle).
In coordinate space, the Coulomb-gauge soft-gluon propagator
Ail x) is, for xé >> ;2, well approximated by

sty 2 ed - a0yt (6.2)

With this simplified propagator, (6.1) is rewritten as

€@ = (&%/mh) ¢y ©f [y ar ThTIE, (6.3)
The lower end in the relative-time (1) integration should be cut at
some time scale T ™ A which distinguishes between soft- and
hard-gluon contributions, Long-time color fluctuation of the 0]
system corresponding to the upper end of the T integration gives rise
to. some nonanalytic terms in Ae (hence in us):

. O
e(2) = —32? Cg 2) (@elme) ¢ ... ] (6.4)

T 2
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where the omitted terms are regular in Ae. Such nonanalytic terms
have been obtained by Appelquist, Dine and Muzinich13 by selective
resummation of the weak-coupling expansion. In the multipole
expansion scheme, such rearrangement is done at the Hamiltonian
level, In general, higher-multipole-order corrections to the QQ
potential consist of higher powers of p = rle as well as
logarithms of Ae (which originate from the energy denominator).
VII. CONCLUDING REMARKS

In this paper we have derived a gauge-invariant multipole
expansion scheme for heavy quark-antiquark systems and studied some
of its applications. A gemeralization to the case of heavy baryons
is straightforward.

The inclusion of hard-gluon~loop corrections, as illustrated in
Fig. 2; leads to the successive improvement of the present double-
multipole expansion scheme which is still at the tree level as to
the treatment of hard gluons, These loop corrections comsist of
quantum corrections to the QQ potential as well as the soft-gluon
interactions coupled to them.

In the present framework no perturbative treatments are
assumed for the soft-gluon sector as well as light-quark sectors.
The long-distance dynamics should in principle describe how soft
gluons turn into hadrons., Practically, one may have to treat
hadron formation phenomenoclogically while treating soft-gluon emission
perturbatively. In Sec, IV, we have noted that hadronic transistions
of low multipole-orders are rather insensitive to the hard-gluon

cloud induced by quark charges. In order to widen the range of
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applicability of the multipole expansion to the ¥ and 7T families,
it is necessary to examine to what extent this feature is inherited
by phenomenological heavy-quark potentials.
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APPENDIX A
In this appendix we study how the soft-gluon field AS(X)
is transformed under the gauge transformation (3.1) defined by
u(e) (Eq.(3.3)).

As preliminaries, let us first evaluate

R T (.1

vhere v, = 7JAl = (™ -igA @) and 50" = o/&X . With the
aid of the formula

1
sef = [ ag e(1B)Fsp FBF (A.2)
0 .

_for a derivative of an exponential operator, we get

1
B ¥ L AP A.3)

We expand the integrand in powers of 8, noting the formulae

‘ {VU[A] > Wl A]] = - ig Fu\)IA] and[vu[A] s ﬁ] = (VD[ATG), where

@ab =1 faCch, etc, The result is
o) _ o I Eens y sy
Here and in what follows, fields with unspecified arguments are

defined at position 1. In the same way, it is now straightforward

to verify that
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Ilgu) = ew-.valgu) (e*w«'v)
- 1 —
= ig %‘b T (w'v)nw“sz . (A.5)

In Sec. III, an arbitrary position X =W + & is parametrized

around some fixed position #. In this case, z)/axk in by (6)

(Ba. (3.1) implies 3. Note that u(e) (au" (6))

= eW'Ve-Wasl((W) (ew.ae_w'v) is rewritten as

(M 10 1 (A.6)
Consequently,
b (8) = - [a + ;1:50 wyr R - = E%m(wv)naﬁ’%&@].
(A7)

The evaluation of U(®) (3 UT‘(G)) is analpgoys to that of I(u),
0 0g k

yielding the result

by(6) = - %, -L;ﬁ%)—l—((w-mnw"%) i (A.8)

Substitution of (A.7) and (A.8) into Eq. (3.2) leads to the desired

result (3.5).
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In Sec. IV, two-body variables g = % (S()Q + }Q)‘ and

> > > . . R
T = xQ - xQ are chosen as independent coordinates instead of

(SEQ, SZQ). In this case, U is no longer a fixed position. Expressed
in terms of (G, ?) , the covariant derivative for the quark field
is decomposed into those associated with the c.m. and relative motions

of the QF system:

@y - vigAk'T);Q - %_ (%Eu]’ igAk(S’(Q).T>+ %(BIEW), igAkG’cQ)»T),
(A.9)

where W = %—"{* . Llet us now make the gauge transformation (3.4) in
the quark sector (i.e, wQ(xQ) > VQ(G Y (xQ)) . Then, the quark

covarient derivative A.9) is comverted to
Fe M- MG s JoM0- 1 Gy, (A.10)

where A(u) (-))c )} and A (':*c ) are given by Eq. (3.1) with the
k Q kYQ

derivative ak in b, (®) replaced by Blgu)and 3]Ew)w respectively.

Obviously, A & ), the gauge field associated with relative QQ

kQ

motion, is given by Eq. (3.5). A simple calculation shows that

Algu) &Q) is given by A:) &Q) in Eq. (3.5) with the Lorentz

index 0 replaced by Kk,

The subsequent gauge transformation in the antiquark sector

(@Q (}Q) > vaQ(?cQ)) With

Vz = exp [— %rk@lgu)-r igAk(;(Q)'T*ﬂ exp[% r?g]
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leaves AIEU)QT and Ai(cT in (A.10) unaffected. However, the

derivative %_%Eu) + algr) = % (Slgu)Jf ig Akﬁc)Q)'T*) + (Blgr)‘ %—igAk(ié) 'T*)

undergoes the transformation. It is now a simple excercise to verify

that the effect of the combingd transformation VQVQ (or VQVQ) on
the covariant derivatives for the quark and the antiquark is
sumarized as in Eq. (4.2). ‘
APPENDIX B
In this appendix we construct the hard-gluon propagator
@35(52, SI); A') in the presence of soft gluons,

A Gaussian integration over the hard gluon field leads to

ab AN = p@b 4 4 _ac 2 ce.eb
2P 0eyid) = 00y - f ahadly D02 00 v S ),

Whz,v) = del [del o o]l e ®-1)

where d¥[b] = 3K~ igb¥(e), and Dﬁg(x,y) is  defined as the

inverse of
’ O o7 l 2 ’
<x, algw(,vp[A]v (A1 + 49 fvv[AleA’] ly, b >. (8.2)

As explained in Sec, IIT, bk(e) is set equal to zero in what
follows; then (B.1) is reduced to the standard set of Feynman rules

in the Coulomb gauge.
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Let us recall the multipole-order assignment in Sec. IIT.
The leading terms in (B.2) are of order (-2, 0) and yield the

instantaneous propagators

Boo(x - ¥) = <F VAT slxy - vy,

Bolx - y) = LX[es® 2%t vty o+ 0B [5D elxg - vy

(B.3)
We denote the rest of (B.2) by Fw:
Lk 2777k
Too = - iglay ,2 } - gAAT,
I =-iglF A1 - v IAIK | +
ok =~ & Fox T Vgt A A e
- 7 ‘ v * 2—17 o
Tye 1ng£{A 1+ gk!LVO!A]vO[A] * 8 doo * &A Aj+ cee
(B.4)
In Tox and Tpge We have used the relation [Vu, V\)] =~ igF;v

and omitted terms that vanish when the transversality of AkSL is

taken into account. The full propagator QSS(X, ¥ A') is

.expanded in powers. of [ : For example,

wv

00 0k

00 00 20 ’
T + T gt +T Akﬁ.r ]AOO + ... ,(B.5)

D = ~ -
00 = %00 * A00[ ‘
where integration symbols are suppressed in an obvious fashion. (See

Fig. 2(a).)
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Some remarks as to general structures of the above expansions derivative kj = ia/aui acting on A (E). As expected from power-
are in order. (i) Comsider n space derivatives acting on a counting, (B.7) possesses the T/r structure which becomes singular
product of “'m A{((ﬁ) tSs i.e. symbolically; ORCYE x=u as T~ 0; its contribution, however, vanishes because A (1) =
[Note the definition of diffe:entiation: e.g., SKAk(u) stands We expand (B.7) in powers of ¥ and express X in terms of A
for . using Eq. (3.5) and the Jacobi identity v‘[DFﬁV] = 0. The final

3 JLAic(;) T o= 3%01\;((3;* ) el %sz“\(;)] ] . expression is
x=u w=
As seen from Eq. (3.5), such an expression vanishes for n <m; e ;
it is, however, in general nonvanishing and is O(0, n + m} for 7 &% (/A=) @ Fkx) " 0@,5) * 0G,3) (8-8)

nzmn, This fact implies that g A; in I‘u v can effectively be

. . . Figure 3 (c), which represents the emission of two X 'v's, is
regarded as 0(0,2). (ii) Power-counting tells us that, in @w,

o , . ] similar in structure to diagram (b). Its contribution is given by
terms with two or more Au are both ultraviolet and infrared

covergent,
Let us first consider Fig. 3(b). In momentum space, its 1 . NN
2 e Lo agfmt - x v Lidm- Lo B s, Kera,
contribution to g -‘%O(x, y; A) is written as 0 : 5.9

2ig° -ikeTwige PN
'(21%6 533 fd kd ae T(\ - lq TA( %)A(q * A J(k) ’ where 228 = m(A,KZ) defined in (B.7). The (Fl—&)z term in the first

(8-6) bracket of Eq. (3.11) follows from the first term in (B.9). The
where A(E) =1/ (.I;Z * AZ)’ Tex- ;’ U= %'(; * ;) » and A; @{’)) is order-{3,4) terms in (B.9) are combined with an analogous term in
the Fourier transform of - Ag (_z>) + We combine the two denomina.to%“s, (B.12) below to give the two terms in the fourth bracket in Eg. (3.11).

> -5
integrate over ¢ and differentiate with respect to r. The result The evaluation of diagram (d) is rather involved. Using two

s Feynman parameters (%,8), we first combine the two Coulomb-gluon

2. - 1 2 s
-igag fds[—— + 1(;3— —) ]e‘rm(l\,k )AB- 2—)1°rA/J(§)’

m( A k% . propagators attached to X and 3;, and subsequently include the.
(8.7) middle one. A momentum integration yields the following contribution

5 .
where m(A,KZ) = (AZ + B(l—s)f(}z)z and ¥’ stands for the to gz Dyo*



——~-—-————[rm(h

Y 1 e S| n_Ln,, n.m 1 m

1 1
ag [ drf dgs e
0 0

P A2 o B L™ %kn)} Ay @A), (B10)
where h= (% - (1 —;))“Z'— (%‘ 'B‘;)E’

A =[A2 +p( -9 Q- +@@ v g -9k +E)2]1/2’
(B.11)

and (&J,1) stand for (F = iau’d, o = iweutd; W and W
are set equal to U after these derivatives are taken. After some

manipulation, (B.11) is rewritten as
0(1,6) + 0(2,6) - 3o/ E"F )% + 063,6) (8.12)

Diagram (e) contains a hard-transverse-gluon exchange. A

somewhat lengthy calculation leads to the result (up to 0(1,4)

and 0(3,4))
%[ m, 5 ,2.mn_,2m _1f(3 _ 1 )m
§7 + AT -20787) - {(~— - >
'lZAS{ 10 slaz 7,
+ rmrn: ')si*}PT“Eﬁ, (B.13)

where F" = ig(FOIN (') - XG5, 6 = ig(FA )
S A AR@M) ana 0, &) = Liasad, syad), Bauation (8.13)
leads to the Fk.ol?:a term [of 0(1,4)] as well as the terms in the

last two brackets [of 0(3,4)1 in Eq. (3.11).
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T 1 1 ]
Figure 3 (b ) ~ (¢ ) represent 9, (X, X; A) and 2,(, ¥; A)
which appear in %eg&’ ¥; A,) {Eq. (4.8)). Note that, e.g.

«

H

@00&, X; A') is obtained from 960(5(), ¥; Av) by letting ¥ -
>
4

i.e. by first letting T » 0 and then replacing 4 by X =14+ 5 ¥.

oo XY

Diagram (b') has a vanishing contribution. A direct calculation
shows that terms of O(p’s) in diagrams (c!) and (d’) are
cancelled in the sum. The order-(3,4) term coming from diagram
(e') involves time derivatives’ 3

Let us next calculate gzggi&, v A7) uw to 0(2,2). The
evaluation of diagram Fig. 3 (f) leads to the result

sz,rk
VA

as[~31K &K 4 ¥ (56’* .
T

i (. fkmm % (q* + ¥

+ :!Z;I (8.14)

where q¢ = i3/0’ and G° is defined in (B.13). Substitution
of Eq. (3.5) into (B.14) gives the result (3.12).

Figure 3 (hl) and (hz) with two hard-transverse-gluon
exchanges contribute to g2 di(_;, vy A) up to 0(1,2). As in
@00, diagram (hl) has an ?/r structure, which vanishes upon
acting on :5\’ (?1), Terms involving one B/Buk are extracted after

somewhat lengthy calculation:

Fligag/M) (3, - BA) + O(1,3) ®.15)
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. L. .. . J . o 1
For diagram (hz), it is sufficient to extract terms with no (¥ (2))11 = (.7((2))11 + i -:—2L~ [V(l), ‘-9?( )] 11
derivatives: ‘
' (3) - (3) -1 [y 2) 1) ; 1[ 1 (Zﬂ
sy ’ ’ ’ s (# )11 (o )11+1—2-[V »H ]11+1_2_V » H 11
1 oaf 18 kK s Ko ke f
g(ots/l\.)%d &+ 25" s sk ¥ sk2) ©.2)
— 2 s :
x (ig F k@ +"6k . V4 A]Vg[A]) . (B.16) Let us denote -7f1=@if(0)>11 and Hy = H + be sO that
0
(3"’( )>88 = '”é - DAO'T‘_. To soclve (C.1) for V, we operate
Combining (B.15) and = (B,16), one is led to Eq. (3.13). (C.1) on the eigenstate |e > of "Vi’ and use the formulae
_ . qabc. _ .abcy
APPENDIX C (T_)a(T+)bPi =3 #2501 P, aa Py, 0P, = d (T+)cpl .
In this appéndix, we determine the unitary transformation e1V The result is

. . P
so that # = " @ - i3 )e™ (Bq. (5.1) hasmo L8
1, 1 » i . i P
("odd") components. Wy =y, @=1,2 (.3
For this purpose we' expand #™" and V in powers of with
o | o
o: _y{new = ¥ Jt’(n) and V= % V(n). For convenience, the rest W‘(l)]a >= %—ig(e»a&”s + iVO)'l(:f-ﬁ)Xs >,
n=0 n=1
mass 2M is included in 2(0) which has no "odd" components.

We assume that V has only 1<»>8 components and fix it to each WCZ)!E >= (g -, + iV -1 [iF + % (;"ﬁ)w(l)}Ie >, (C.4)

g ¥ 1Vp)
order in p:
where (8% = ¢ E° and FC is defined by @¢(B) = F(1,)y.
{Jt’(l) - Sov(l) + i[V(l), x{O):l}odd =0, Substitution of these expressions into (C.2) leads to the 1<>1
Hamiltonian (5.2).
(2) . 342 [ @ (0)] [y D -
{Jf VAR A 4 +1[V o ]Odd 0,
(C.1)
etc. With this choice of V, the 1«1 component of the transformed
; ; o= (0) '(2) ' (3)
Hamiltonian (,X’)ll ¢4 )11 + (A )11 + (oF )11 -

is given by
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It is the combination gAk that causes a momentum variation
of the quark motion, as seen from the covariant derivative

B - igA;Ta.

The question gauge invariance of the multipole expansion has
been examined by Peskin, Ref. 6.

E. S. Abers and B. W. Lee, Phys. Reports 9C, 1 (197 ).

By a "'gauge-invariant' form it is meant that the soft-gluon
interactions are expressed in terms of va[A] and covariant
derivatives only.

This is the closed expression for the unitary transformation
previously found in Ref.[7].

Time derivatives 3 acting on the quark (or antiquark) field
are taken to be 0(ae) ~ 0(0,0).

For the rest of the terms in(xfhard, hard-gluon exchanges by
the some quark are neglected since the nonrelativistic
Hamiltonian 3¢, which ignores very hard transverse gluons
(g8 M) is not adequate for extracting them.

This cancellation phenomenon has been noted in some earlier
calculations in Refs. [5, 61 .

For the Breit-Fermi interaction, see, e.g., V. B. Berestetskii,
E. M. Lifshitz and L. P. Pitaevskii, Relativistic Quantum
Theory; (Pergamon Press, Oxford, 1971), Part I, p. 280.

The group-theoretical structure of hadronic transitions has
recently been studied by Yan, Ref,[8], within a gauge-invariant
miltipole expansion scheme,

In BEq. (5.3), the hermitian conjugate of [e - J?h + ivof1

. . . 1 . < L —
is given by [&’ - éﬂa + 1VO] , where V 0= " f% = 1gA0
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(56 acts to the left).
25. A comparison with the standard perturbation theory tells us
that [- ae + iaO]-l is defined as the causal propagator.
FICURE-CAPTIONS

Fig. 1 Classification of gluons surrounding a heavy quark-antiquark
system.

Fig. 2 Diagrammatic representation ofbhard-gluon exchanges between
qaurk color charges.

(a) Zero-hard-gluon-loop approximation. Dashed lines are
~hard {Coulomb or’transverse) gluons. Shaded blobs represent
the coupling of soft gluons to the hard gluons.

(b) One-hard-glueon-loop approximation., The hard-gluon

loop in diagram (bl) includes a hard FP-ghost loop. Small
black blobs at the triple hard-gluon vertex represent the
coupling to soft gluomns.

Fig. 3 Detailed structures of hard-gluon exchanges. Dotted lines
are hard Coulomb gluons while zigzag.lines are hard
transverse gluons. - Wavy lines represent soft (Coulomb or
transverse) gluons,

Fig. 4 Hadronic transitions of low multipole-orders between heavy
QJ bound states. Here Fl and M1 imply color-El and color-

* .
Ml transitions, respectively, PP  stands for parity change.

This research was supported by the High Energy Physics Division of the
U.S. Department of Energy under contract W-7405-ENG-48.
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